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Introduction

GEODYNII is a conventional batch least-squares differential corrector computer program with

deterministic models of the physical environment. Conventional algorithms have been used to

process differenced phase and pseudorange data to determine eight-day GPS orbits with several

meter accuracy (Schenewerk, 1990). However, random physical processes drive the errors

whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy,

these random processes should be modeled stochastically. The conventional batch least-squares

algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is

suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the

correlation among data values. Differenced pseudorange, and especially differenced phase, are

precise data types that can be used to improve the GPS orbit precision (Counselman et al., 1989).

To overcome these limitations and improve the accuracy of GPS orbits computed using

GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using

GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It

contains a correlated double difference range processing capability, first order Gauss Markov

models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random

walk model for the tropospheric refraction correction.

The development approach has been to interface the standard GEODYNII output tiles

(measurement partials and variationals) with software modules containing the stochastic

estimator, the stochastic models, and a double differenced phase range processing routine. Thus,

no modifications to the original GEODYNII software have been required. A schematic of the

development is shown in Figure 1. The observational data are edited in the preprocessor and the

data are passed to GEODYNII as one of its standard data types. A reference orbit is determined

using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial

(FTN90) and variational (FTN80, V-matrix) flies are generated. These two flies along with a

control statement fide and a satellite identification and mass file are passed to the filter/smoother to

estimate time-varying parameter states at each epoch, improved satellite initial elements, and

improved estimates of constant parameters.
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Figure 1. Flowchart showing the procedure as currently developed

Background

The following discussion assumes some familiarity with filtering and smoothing theory as

developed, for example in Brown (1983) and Gelb (1974). Additional familiarity is assumed with

the square root information filtering and smoothing algorithm as developed in Bierman (1977) and

implemented by Swift (1987). Any departures in our implementation from Swift's formulation are



explained here in detail. Some topics are expanded here to clarify and to supplement the

discussion in these earlier references. Particular attention has been focused on showing the

common foundation of the information and covariance filters. The efficiency of the Householder

Transformation to compute an equivalent square upper triangular matrix from a larger rectangular

matrix is discussed. Also, the quantities that define the first-order Gauss Markov and random

walk models are clearly derived.

The discrete form of the stochastic state equations are:

where

Axj+ 1 = _jAxj + Go9./

Axj is the state at time t_

epj = _(tj+a,tj ) is the nonsingular state transition matrix relating the state at tj

to the state t_+_.

o9j is the vector of white noise process terms with a nonsingular covariance matrix

Qj with dimto < dimAx.

G maps the source white noise process into the state with dimAx.

(1)

The discrete form of the linear measurement model is:

zj = Ajaxj + vj (2)

where

zj is the vector of measurements at time t j

Aj is the matrix of partial derivatives of the measurement model w.r.t, the state at tj

vj is the vector of measurement noise with the covariance Po.

The observations are decorrelated and whitened so that Po = I. This is done without a loss of

generality. A set of observations with Po = I can be constructed. The procedure will be given

later.

A solution to this problem was first proposed by Kalman in early 1960's (Kalman, 1960; Kalman

and Bucy, 1961). A solution for the state and its covariance can be derived by applying Bayes'



rule. Thisderivationcanbe found in Maybeck (1979). The results are repeated here with a slight

change in notation.

^ + Aj A_ ]pj÷_=[_l T -1 (3)

The '-' symbol refers to the propagated (predicted) estimate of the state and covariance at tj.

The '^' symbol refers to the estimate of the state or covariance after incorporating the

measurement at tj. The state A_j is propagated from tj. to time t j÷l, using equation (1). The

covafiance _ is propagated to tj÷_, by

(5)

Notice that the inverse of _÷1,, is required in equations (3) and (4). To avoid the inversion of _÷1

at each step, a direct propagation of _ is desired. This can be developed by applying the

following lemma to equation (5).

(A + XrY) -1 = A-' - A-'Xr(I + YA-1Xr)-IyA-1 (6)

where

X T = GjQj

Y = G_

and defining

M#+, = {_ T ( tj+l,tj )_j l{_( tj+l,t j ) (7)



wherethegainCj, is •

P/+'I= Mi+x r- C#Gj M j+I, (8)

T
C_ = Mj+,Gj[GjMj+,G_ + Q]']-' (9)

" ^ I

To propagate and update the state equations in terms of _1 and _ , the state estimates are

replaced by

_j = _f'Z_j (10)

A _ ARj (1 1)yj _. 1 ^

The state update and propagation equations are:

T
Yj = 5'j + Ajz#

_¢j+,= [ I - CjG_ ]*( ti+,,tj )_cj

(12)

(13)

The state estimates can be found at any time by solving equations (10) and/or (11) for @ and/or

A_j. Equations (8) to (13) are an algorithm to solve the problem defined by equations (1) and

(2). Here, the inverse covariance is propagated. This algorithm is sometimes called a Bayes'

filter. The inverse covariance is also called an information matrix leading to the name information

filter. This algorithm requires computing the inverse of an n x n matrix where n is the number of

states. The state estimate covariance can be completely uncertain since in the inverse of Po the

elements of the matrix become zero. This algorithm is most efficient when the number of

measurements, m, is relatively larger than the number of states, n, and when the solutions for the

state and covariance are needed infrequently.

The usual Kalman filter can be derived from equations (3) and (4) by applying the matrix lemma:

[p-'+ ATA]-' = p- pAr[APAr]-'AP (14)



These optimal filters, either the Bayes' or Kalman, exhibit numerical instabilities that cause the

state estimates to diverge (Bierman and Thornton, 1977). More numerically stable gain matrix

expressions have been derived for both the covariance and information matrix forms (Maybeck

ibid.). However, these require a significant number of additional matrix computations and are

thus not completely satisfactory. A more comprehensive approach was to reformulate the filter

algorithm in terms of square roots of the covariance or the information matrix. The square root

l'tlter maintains numerical accuracy to approximately the same number of digits with half the word

length required by a conventional non-square root algorithm.

The square root (or more correctly the Cholesky factorization) of an nxn matrix N is defined as •

N--- S_' (15)

The square roots are not unique. Any orthogonal transformation (T) of a square root matrix S is

also a square root of N. The useful properties of the orthogonal transformation can be shown by

factoring _1 into the product of its Cholesky factors

_jl ~T"= R_R.i, (16)

and thus, _1 becomes:

_,= _W_j = _j + A_Aj (17)

where Rj =|'vl (18)
LAjJ

[AjJ

The transformation T is an orthogonal transformation. Its columns form an orthonormal basis for

Rj of n vectors since Rj has rank of n. The first n vectors span the range space of Rj and the

vectors n+l to n+m are orthogonal to this spanning set. Thus, the last m rows of Rj are zero.

Also, the basis vectors were chosen in a manner that Rj is upper triangular. A Householder



^

Transformation T is used to compute Rj (Bierman, ibid.). This allows the square root matrices of

dimension (n+m) by n to be transformed to an equivalent form of an upper triangular square

matrix of dimension n.

Square Root Information Filter and Smoother (SRIF/SRIS)

In application of the Householder Transformation to an augmented matrix is the essence of the

Square Root Information Filter (SRIF). The equations are most easily constructed using

Bierman's 'data equation' point of view. The problem is treated as a least-squares problem where

the least-squares functional is to minimized. This is accomplished by applying a Householder

Transformation assuming the state at tj to be a priori information and augmented with the

measurements at tj. Thus,

l[Ro]: (20)

where the 'data equations' are defined as

_j = RjA_j (21)

^

^ RjkR (22)Zj = j

Swift has shown the equivalence of equation (20) with the more conventional formulation of

equations (3) and (4).

The propagation of the state and the covariance were given in equations (1) and (5). These can

also be incorporated into the SRIF by defining 'data equations' and applying the Householder

Transformations. The details of the derivations can be found in Bierman (ibid.). The results are

repeated here.

where the 'data equation' for the noise term 09 is

(23)



z_,(j) = R_ (j)eo(j)

Swift has also shown the equivalence of equation (23) to equations (1) and (5).

(24)

Bierman further partitions the propagation equation (1) into stochastic states, dynamic states and

bias states. Equation (1) can be written as:

r:l ° .[i
LAyjj÷, 0 JLayJj

(25)

where

Ap is the correlated process noise states

Ax states that vary with time by not explicitly influenced by process noise.

Ay bias (constant) parameters.

Vp, V:, V':,, are transition matrix elements.

The dynamic parameters can be redefined in the form of pseudo epoch state parameters. This

dynamic model def'mition allows the variationals and measurement partials from a batch

differential corrector orbit determination program (e.g., GEODYNII) to be used directly in the

filter algorithms. The state equations now become

f:l o0]i
LAyjj+_ 0 0 I hyj

(26)

where

v. =v.(t.,,tj)= v;'(tj÷.ro)v_(tj.,,tj)

(tj+t, To) is the inverse of the state transition matrix interpolated from the

GEODYNII V-matrix file (FTN80)

V'p(tj+_,tj ) is the transition matrix of the time-varying parameters from tj to t;+,.



The transformation in equation (20) is written as a two step transformation that saves storing a

block of ny x (np+nx) zeroes that would be present if equation (20) was used in its original form.

[Ap Ax Ay 0 Ay

':]:[Ro,::]

(27)

(28)

The mapping equation (23) becomes, assuming z_, is zero

 ,RRVI  O 1ao ? o o z;
Rpx Rpy "Zp = Rp Rpx Rpy 7,p (29)

The subroutine in Bierman ( ibid., 155-157) neglected the upper triangular elements of R_ above

the diagonal. A subroutine to compute right side of equation (29) including the neglected off-

diagonal elements of R_ is given in Appendix B.

The smoothing process is a backward f'dter of the forward filter results. For the orbit

determination problem, the fixed interval smoother is appropriate. For Kalman filtering, the

Rauch-Tung-Streibel (RTS) smoothing algorithm is widely used (Brown, ibid.). A general

formulation for inverse covariance smoothing is given by Maybeck (ibid.). The Square Root

Information Smoother (SRIS) is given by Bierman (ibid.). The equation for the implementation of

Bierman's pseudo epoch formulation is given by Swift (ibid.). Swift also shows the equivalence of

the SRIS to the RTS smoother. The SRIS equation is

LO[R'vpR'p+R'ppM+R'p_VvR'p_R'pyz'p] LO[RpvR'pR'p_I_pyzT]
T;p_/R _ R_M+R_Vp R#w R_y Z'p = , 0 Rp# R_,_ R_y z_

R_V. R_ R_ z_Jj+, 0 R_ R_ z_ j

(30)

10



The top row of the matrix on the right side is not needed again, but the other terms are combined

with the smoothing coefficients at tj to smooth back to tj_ 1.

From the general expression of the data equation, and the relationship of the covariance to the

square roots of the information matrix, the solution for the states and their covariances for either

the filter or smoothing operations are

xj = R_tzj (31)

' Pj = R_'R; T (32)

For filtering, the right sides of equations (27) and (28) are solved for the unknowns and the

covadances as

R,.lrrz,)_
= R. ] Lt.z.) R:y

Lhyjj R;izy

(33)

[[,;,,-, _,,<R]'= ?. J R: Ji [R,J Y / (34)
R; Jj

-T I T

.:J [..J";k[o [",,J";J (35)

Py = R_JRy 'r (36)

For the smoothing problem, the right side of (30) is used in equations (32)-(36) with the

smoothed value of zy and Ry. The smoothed values of Zy and Ry are the values at the last filter

step.

Time-Varying Stochastic Parameter Models

Many physical processes can be modeled using one of the Gauss Markov filters easily constructed

by filtering white noise through a simple filter. The processes that are of interest here are the

II



first-order Gauss Markov model and the random walk model. The discrete mathematical

expression for these models is now derived from their continuous forms. The fh'st-order Gauss

Markov process describes the physical process where the state at tj+_ depends only on the

previous state at tj. This process can be described by the stochastic differential equation.

dp(t) 1
p(t) = to (37)

dt 17

where

"r is the correlation time

to is the white Gaussian noise with zero mean and covariance Q,

E(mj) = O, E( o)j ,eo_ )=QS (j - k) = q_o_5 (j - k) where

continuous spectral density.

2 satisfies the differential equationThe variance of p, o'p

cla_(t)= 2a_(t) + q_o,
dt 17

q_o,, is the

(38)

If the process is allowed to continue for a time interval several multiples longer than v, the

E(p2(t)) will approach a limit and d_r_(t) will approach zero. This is the steady state variance.
dt

do'_(t) = 0 and solving equation (38) for steady state tr_(ts,) is found
By setting dt

17

a_(t,,)=_q_o_ (39)

From state space methods the solution of equation (37) is

and covariance of p is

j+l

p(j + 1) = M(j + 1,j)p(j) + _ M(j,X)eo(_,)d&
J

j+l

Cp = MPjM r + _ M(j + l,Z)Q(Z)Mr(j + l,Z)cl£
J

(40)

(41)

12



Thematrix M is thestatetransitionmatrixwhichmustsatisfythe relationships

fill = _1_ m and M(j,j) = I

The solution for M is
At

M=e _

where At = tj÷ t - tj

Thus the discrete form of the state update becomes

(42)

(43)

Ap(j + 1) = M(j + 1,j)hp(j) + eoj (44)

This is the top row of equation (26).

Now the solution for the discrete covariance update is derived from

The random walk model is a special case of the first order Gauss Markov where v --->oo.

discrete state update becomes

(45)

The

Ap(j + 1) = Ap(j) + eOj (46)

The discrete covariance is found from

qd,, = !_r,_l=,,-_ 1- e = q=,, !_m-_ 1- 1---
2At 4 ...

v 2!

13



( (1'1= qco. Fun At + constanti* _1 = qco,At (47)

So, to implement the first-order Gauss Markov process, the correlation time ('r) and the

continuous process noise variance (q_o,,) must be specified. The matrix M is computed using

equation (43) and the qd_, from equation (45). The random walk model is specified by defining

the continuous process noise variance (qco,), here M= I, and qdis is computed using equation

(47).

Solar Radiation Pressure Scale Coefficient and Y-bias Acceleration Model

The orbit related stochastic parameters modeled in OSUORBFS are first-order Gauss Markov

models for the solar radiation pressure scale coefficient and the y-bias acceleration. The Vp

matrix that maps the effects of the stochastic parameters Apj, on the epoch state parameters Axj

is derived following the scheme of Swift (ibid.). The Vp matrix has dimension nx (number of

pseudo epoch state parameters) by ncl (number of orbit-related stochastic parameters) and has the

general form of

V.(tj÷l,tj)=

"01 0 ...
K,

O o "o

". _r_
• °o

O ......

0

° °

o

"°. 0

0 O,_a,
r_

(48)

The ith satellite contribution _, = Or(tj÷l,tj), a 6 by 2 matrix, to Vp is computed as

[ Jr(tj÷_ )

, ./o_,(tj)

Ok, (t_÷''tJ) = O; (tJ÷"tJ) / Oi"(tj._)

o_tJ +1) ,]

/
(49)

14



where

O_(tj+,,tj ) is thestatetransitionmatrix interpolatedfrom theGEODYNII output

V-matrix file (FTN80) variationals. See also equation (26).

The partial derivatives of the position and velocity at tj÷_ with respect to the solar radiation

pressure scale coefficient and the y-bias acceleration at t./ are approximated using a second-order

Taylor Series expansion.

where

= o (tj) At 2 o_(tj) B

- 2 _-_-(t_.) k, 1=1,2
(50)

1

"fK,_

0

Bx, = 0 for a random walk.

0

1

TK, 2

Since the angle between the x and y satellite axes is not easily estimated it is not modeled in

OSUORBFS. A 90 degree angle is assumed. Thus the following differs slightly from Swift.

[ o (tj)
_(tj) ] [a_shapelI o +

Lc_mshape+

(51)

where

a m and a_ are the accelerations along the satellite x and z axis respectively.

The ROCK4 and ROCK42 models are used to compute a_ and a,'.

shapeis either 0 or 1 depending if the sun is obstructed by the earth from view of

15



thesatellite.

is amatrix transformationfrom thesatelliteaxissystemto the True of

Reference Date (TORD) inertial Cartesian reference system.

The ROCK4 and ROCK42 models (Fliegel and Gallini, 1992), the matrix transformation R,, and

the computation of shape require the sun-earth-satellite positions. The mean of date (MOD)

positions of the sun and earth were computed using the closed form expressions of Fliegel and

Harrington (1993).

Tropospheric Refraction Correction

The measurement-related stochastic parameter modeled in OSUORBFS is a random walk model

for the refraction correction (Tralli et. al., 1988; Herring et. al., 1990). This model is def'med by

equations (46) and (47).

Double Difference Observable Decorrelation and Whitening

The full covariance matrix for the double difference range data is constructed. The observations

are then decorrelated and whitened. The general form of the observation equations as defined in

equation (2) is

z = Ax + v (52)

Here, the observation error v has a zero mean, E(v) = 0, but is correlated, E(w r) = Pv

A set of uncorrelated observations with unit covariance can be constructed from the lower

triangular square root of Pv.

Pv = L_Lv T (53)

Here, L_ can be computed by a lower Cholesky factorization of P_. The desired independent set

of observations is

a-:z=L-:A + a- v (54)

16



At any particular epoch, the m = (#stations-1)x(#satellites-1) linear independent double

difference range data types can be formed. These m observations are independent in the sense of

linear algebra, but are statistically correlated. Each of the m observations has the form

(GEODYNII measurement type=87)

[(sl _ tl) - (s2 _ tl)] - [(sl--> t2) - (s2 _ t2)] (55)

where

(sl---) tl) etc., are the satellite-station range observations (e.g., satellite 1 to

station 1).

For small regional networks, a single satellite station pair is selected as the base satellite-station

and the m observations are constructed by differencing the remaining satellite-stations with the

base pair. For a global network, the distance between stations may prevent using a single base

pair to construct all observations at that epoch. Thus, no consistent numerical structure exists

that would permit a symbolic construction of the decorrelated measurement set. Pv and L-,_ must

be computed numerically at each epoch. Pv is computed using conventional error propagation

P, = cr_GG w (56)

where

cr_ is the standard deviation of the single one-way range measurement

G is the matrix of partial derivatives of the observation equation with respect

to the one-way range. This matrix contains elements of -1,0,1 which are the linear

combination of one-way ranges that define the double difference

The decorrelated observation set with unit covariance is obtain from equations (53) and (54).

OSUORBFS

The program OSUORBFS is designed to f'tlter and smooth the GEODYNII batch solutions.

OSUORBFS requires from GEODYNII the measurement partials file (FI'N90) and the

variationals V-matrix file (FTN80). The user must supply a user input ffie (FSN05) and a t'fie of

satellite identification numbers and masses (SATMAS.TAB). The GEODYNII processing

proceeds in the usual way with TDF, G2S, and G2E program executions. On the last iteration an

17
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output of the setup deck (FTN05) which contains the current parameter estimates is requested

using PUNCH to output the new setup deck in file FTN07. Then FTN07 is modified to include

global cards PARFIL and EMATRX to output fries FTN90 and FTN80. The maximum iteration

numbers for the global (outer) and arc (inner) are set to one on the ENDGLB and REFSYS

statements.

Now TDF, G2S, and G2E are executed and b'TN06, FTN80, and FTN90 files are output. An

alternative approach avoiding the restart of GEODYNII is to force an additional iteration in the

first GEODYN execution by increasing the outer/inner iteration maximum counts and decreasing

the RMS tolerance. This approach would be less cumbersome to implemented. Additional

operational experience is needed to determine which approach is satisfactory.

The user must construct the control file, FSN05, for OSUORBFS. This file contains six control

statements (REFSYS, DECORR, FILSMT, UPDTRJ, CONPRT, SATMAS) to control the

configuration of the filter/smoother solutions. The six statements are mandatory. These

statements are explained in Appendix A.

FSN05 must also contain the parameter labels from FTN06. The measurement partials and

variationals form GEODYNII are identified by internal parameter labels as described in the

GEODYNII manual volume 5. For OSUORBFS to recognize these partials, the parameter labels

as they appear in FTN80 and FTN90 must be specified in FSN05. These labels can be accessed

by printing the EMATRIX header record in b'TN06 during the last iteration of the GEODYN run.

They must be manually edited and placed in FSN05.

FSN05 must also contain the parameter types as defined in the following table.

2

3

4

DescriDtion

orbit-related stochastic

measurement-related stochastic

pseudoepoch state

measurement-related constant

orbit-related constant

Example

solar radiation pressure (lst Gauss Markov)

y-bias acceleration (lst Gauss Markov)

tropospheric refraction correction (random

walk)

satellite initial elements

double difference bias, tropospheric refraction

correction

solar radiation pressure coefficient, y-bias

18



For eachparametertype the apriori standarddeviationmust be specified. Additionally, for the

first-order Gauss Markov model, the continuous process noise standard deviation (q.__) and the

correlation ('r) time must be specified. For the random walk model, the continuous process noise

standard deviation (q_'_) and a negative correlation time (--¢, which acts as a flag) must be

specified. These are read in a free format.

The order of the parameter types in FSN05 is arbitrary; the file is sorted and the time-varying

stochastic parameters are moved to the top of the file to accommodate the space saving

implementation of the Vp as an nx x nd matrix.

The stochastic parameters (types 1, 2) are assumed to be zero mean processes. Typically the

physical process modeled is not zero mean. The non-zero mean is estimated as a constant (types

4, 5). Thus, the constant (types 4, 5) and the stochastic parameters (types 1, 2) are estimated

together. The constant can be estimated without a stochastic parameter, but a stochastic

parameter must be estimated with a constant unless of course the process has a zero mean.

Since GEODYNII does not have time-varying models the physical processes are modeled by

estimating constants over consecutive segments of time. For example, the tropospheric scale

correction in GEODYNII may be modeled over a 24 hour period by estimating a constant over

the first 12 hours and another constant over the second 12 hours. In OSUORBFS, the one

constant and a time-varying stochastic parameter would be estimated over the entire span of 24

hours. This requires the measurement partials from the two consecutive constant estimates in

GEODYNII to be concatenated. This is controlled by the CONPRT statement.

OSUORBFS can be implemented as a conventional least-squares sequential estimator by

specifying all parameters as pseudo epoch state (Type 3) and constant parameters (Types 4, 5).

The partial file should not be concatenated. The full covadance matrix may be generated. If the

GEODYNII solution is to be repeated using OSUORBFS in a sequential least-squares step, then

the full covariance matrix should not be formed.

19
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REFSYS

.... + .... 1 .... + ....

REFSYS

.... +.... 1 .... + ....

COLUMNS FORMAT

I-6 A6

7 blank

21-26 I6

27 -30 I4

31-40 D10.8

2.... + .... 3 .... + .... 4 .... + .... 5 ....

910208000000. 0000000

2.... + .... 3 .... + .... 4 .... +.... 5 ....

DESCRIPTION

REFSYS - Specifies the True of Reference

Date (TORD) reference system used by

GEODYNII. The time MUST be the same as

the time used on the REFSYS statement in

FTN05 (G2S). Only TORD is valid. Mean of

Date (MOD) J2000 is not currently

implemented

Year, month,day of reference date (YYMMDD)

Hour, minute of reference date (HHMM)

Seconds of reference date (SS.sssssss)

.... 6 ....

+ .... 6 ....

UNITS
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DECORR

.... + .... 1 - - -

DECORR 1

.... + .... 1----

-+ .... 2 .... + .... 3.... + .... 4 .... + .... 5.... + .... 6....
0 .i0

-+ .... 2.... +.... 3 .... + .... 4 .... + .... 5 .... + .... 6....

COLUMNS FORMAT DESCRIPTION UNITS

1-6 A6 DECORR - controls the computation of the full
covariance matrix and decorrelation for double

difference ranges

7 blank

8 I1 = 0, measurements assumed uncorrelated,

measurements whitened by dividing by the

GEODYNII supplied weight.

= 1, full covafiance matrix computed for

double differenced ranges, then decorrelated
and whitened.

9-10 blank

11-20 D10.5 standard deviation for a one-way range meters
measurement
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FILSMT

..... _.... 1 .... +.... 2.... +---

FILSMT iiiiiiiiii
..... _.... 1 .... +.... 2.... +---

-3 .... +.... 4 ---

-3 .... +.... 4---

-+ .... 5.... + .... 6 ....

-+ .... 5 .... + .... 6 ....

COLUMNS FORMAT DESCRIPTION UNITS

1-6 A6 FILSMT - controls the filter/smoother

operations, controls the computation of the
estimates/covariances of the stochastic and

pseudo epoch parameters (px) and the

constants (y)

7 blank

8 I1 = 0, do not filter data

= 1, filter data

9 I1 = 0, do not compute the estimate px at each

filter step

= 1, compute the estimate px at each filter step

10 I1 = O, do not compute the covariance px at each

filter step

= 1, compute the covariance px at each filter

step

11 I1 = O, do not compute the estimate y at each

filter step

= 1, compute the estimate y at each filter step

12 I1 = 0, do not compute the covariance y at each

filter step

= 1, compute the covariance y at each filter

step

13 I1 = 0, do not smooth data

= 1, smooth data

14 I1 = 0, do not compute the estimate px at each

smoother step

= 1, compute the estimate px at each smoother

step
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15

16

17

I1

I1

I1

= O,do not computethecovariancepx at each
smootherstep
= 1, compute the covariancepx at each
smootherstep

= O,do not computethe estimatey at the last
filter step/f'n'stsmootherstep
= 1, compute the estimate y at the last filter

step/first smoother step

= O, do not compute the covariance y at the last

filter step/first smoother step

= 1, compute the covariance y at the last f'dter

step/first smoother step

26



UPDTRJ

.... +.... 1 ....

UPDTRJ 1

.... +.... 1 ....

COLUMNS

1-6

7

8

.J¢. ....

FORMAT

A6

blank

I1

2 .... + .... 3 .... +.... 4.... +.... 5....

2 .... + .... 3.... +.... 4.... +.... 5....

DESCRIPTION

UPDTRJ - controls the satellite trajectory

computation and output in a TORD system to
fde

= 0, trajectory is not updated

= 1, trajectory is updated

.... 6 ....

+ .... 6 ....

UNITS
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CONPRT

.... ÷ .... "l .... ÷ ....

CONPRT 1
.... + .... 1 .... + ....

COLUMNS FORMAT

1-6 A6

7 blank

8 I1

2 .... + .... 3.... + .... 4---

2 .... + .... 3.... + .... 4---

DESCRIPTION

CONPRT - controlsthe concatenation of the

piece-wise measurement partials to the first

partial location

-+ .... 5.... + .... 6 ....

-+ .... 5.... + .... 6 ....

UNITS

= O, no concatenation

= 1, concatenate
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SATMAS

SATMAS 0

COLUMNS

1-6

1.... +.... 2.... +.... 3.... + ....

1.... +.... 2.... +.... 3.... + ....

FORMAT

A6

blank

I1

DESCRIPTION

SATMAS controls which

system to use

.... +.... 5 .... +.... 6 ....

.... +.... 5 .... +.... 6 ....

UNITS

satellite number

= 0, GEODYN international satellite id

=1, OSU modified international satellite id
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c

subroutine hsttp(dt,np,nx, npx,nd,ntot,tau,vp,rw,s,rpsm,v,dm,maxnd,

maxnx,maxnp,maxobs,maxntr,maxntc,pnstdv)

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cTp
c

c

c

c

Apply a sequence of elementary Householder transformations to

partially triangularize the a posteriori information array,

this process propagates the SRIF from time t to time t+dt.

Adapted from 'Factorization Methods for Discrete Sequential

Estimation' by Gerald J. Bierman, pp.155-157.

Version

9305.1

Comments Pgmr.

Modified to compute correctly the D. Chadwell

Rp* matrix. The off-diagonal elements

were missing from original version.

Variable Type i/o Description

dt r*8 i

np i'4 i

nx i'4 i

nd i'4 i

tau(np) r*8 i

Vp(nx,nd) r*8 i

Rw(np) r*8 i

S(nx+2*np,ntot) r*8 i

Rpsm(np*(np+l)/2)r*8 i

Propagation interval (secs.)

Number of stochastic time-varying

parameters

Number of bias (constant) parameters

Number of orbit-related stochastic

paramters

Correlation times

The first Nd columns of the Vp matrix

correspond to the dynamic paramters;

the last Np-Nd columns are omitted

because they are in theory zero.

Process noise standard deviation

reciprocals

The top Np+Nx rows of S contain the

SRIF array corresponding to the p

and x variables; the bottom p rows

are used to store smoothing related

terms.

Time-updated array with smoothing-

related terms stored in the bottom

portion of S

Upper triangular matrix contains

smoothing related terms from the

t-dt to t.

Upper triangular matrix contains

smoothing related terms from t to

t+dt.

S on input: S on output:

Np

Nx

Np

Npx

Np Nx I Ny I 1
.........................

^Rp ^Rpx I ^Rpy I ^Zp

^Rpx ^Rx i ^Rxy i ^Zx

.........................

0 0 I 0 I Zw
.........................

==>

l~Rp ~Rpx I ~Rpy I ~Zp

l~Rxp ~Rx I ~Rxy I ~Zx

.......................

l*Rpp *Rpx I *Rpy I *Zp

.......................

C .......................................................................

implicit none

integer*4 i,j,k,l,np,nd,nx,npx,ntot,jl,j2

integer*4 maxnd, ict,index,maxnx, idiag,idiag2

integer*4 maxnp,maxobs,maxntr,maxntc
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double preclsion

double precision

double precision

double preclsion

double precision

double precision

double preclsion

vp(maxnx,maxnd)

s(maxntr,maxntc)

v( maxnp+maxnx+maxobs )

rw(maxnp),tau(maxnp),dm(maxnp),z,sigma

alpha,delta,dt,tmp

rpsm( maxnp*(maxnp+l)/2 )

pnstdv( maxnp )

c

z=0.d0

do j=l,np

if(tau(j).gt.0.d0)then i!Rw for ist order Gauss Markov Model

dm(j =dexp(-dt/tau(j) )

rw(j =l.d0/(pnstdv(j)*dsqrt(l.d0-dm(j)*dm(j)) )
else !!Rw for random walk model

dm(j =l.d0 !!If tau.lt.0 flag for random walk
rw(j =dsqrt( l.d0/dt )/pnstdv(j)

endif

enddo

idiag=0

idiag2=0

do jl=l,np

idiag2=idiag2+jl

if(jl.le.nd)then

do i=l,npx
do k=l,nx

s(i,l)=s(i,l)-s(i,np+k)*vp(k, jl)
enddo

enddo

if(jl.gt.l)then

ict=npx+jl-I

idiag=idiag+jl

index=idiag

do i=jl,np

do k=l,nx

rpsm(index)=rpsm(index)-s(ict,np+k)*vp(k,jl)
enddo

index=index+i

enddo

endif

endif

alpha = -rw(jl)*dm(jl) !! Assumes an uncorrelated process noise
!! coy.

sigma = alpha*alpha
do i=l,npx

v(i)=s(i,l)

sigma = sigma + v(i)*v(i)
enddo

sigma = dsqrt( sigma )

alpha = alpha - sigma

ict=jl-I

index=idiag2

rpsm(index) = sigma

sigma = l.d0/(sigma*alpha)

do j2=2,ntot
delta=z

if(j2.eq.ntot)delta=alpha*zw(jl) !! Assume zero mean

do i=l,npx

delta = delta + s(i,j2)*v(i)
enddo

delta=delta*sigma

l=j2-1
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tmp=delta*alpha

if(j2.gt.np)then

l=j2
else

if(j2.1e.(np+l-jl)
ict=ict+l

index=index+ict

rpsm( index ) =
endif

endif

s(npx+jl,l)=tmp

)then

tmp

do i=l,npx

s(i,l)=s(i,j2)+delta*v(i)
enddo

enddo

s(npx+jl),ntot)=s(npx+jl,ntot)+delta*zw(jl)

delta=alpha*rw(jl)*sigma

s(npx+jl,jl)=rw(jl)+delta*alpha

do i=l,npx

s(i,np)=delta*v(i)
enddo

enddo

return

end

Assume

mean

zero
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